

Mark Scheme (Results)

Summer 2024

Pearson Edexcel International Advanced Subsidiary Level In Chemistry (WCH12) Paper 01 Energetics, Group Chemistry, Halogenoalkanes and Alcohols

Section A

Question Number	Answer	Mark
1	The only correct answer is A (arrow A)	(1)
	B is incorrect because this is the activation energy for the reaction	
	$m{C}$ is incorrect because this is the difference in energy between the reactants and the intermediate	
	$m{D}$ is incorrect because this is the difference in energy between the products and the intermediate	

Question Number	Answer	Mark
2	The only correct answer is C (ion-dipole)	(1)
	A is incorrect because the ions form no dipole	
	B is incorrect because the ions cannot form hydrogen bonds	
	D is incorrect because the ions do not form significant London forces	

Question Number	Answer	Mark
3	The only correct answer is B ($\frac{1}{4}$ CCl ₄ (g) \rightarrow $\frac{1}{4}$ C(g) + Cl(g))	(1)
	A is incorrect because this represents the total energy required to break all four bonds in CCl4	
	$m{C}$ is incorrect because this represents the total energy released when forming all four bonds in CCl_4	
	D is incorrect because this is for bond formation, not bond breaking	

Question Number	Answer	Mark
4(a)	The only correct answer is A ((1)
	B is incorrect because the least branched chain has the highest boiling temperature and this has one methyl branch	
	$m{C}$ is incorrect because the least branched chain has the highest boiling temperature and this has one methyl branch	
	$m{D}$ is incorrect because the least branched chain has the highest boiling temperature and this has two methyl branches	

Question Number	Answer	Mark
4(b)	The only correct answer is D (butane-1,4-diol)	(1)
	A is incorrect because this compound is held together by London forces only	
	B is incorrect because this compound is held together by London forces only	
	C is incorrect because this compound is held together by hydrogen bonds, but only one per molecule	

Question Number	Answer	Mark
5	The only correct answer is A (Mg + $H_2O \rightarrow MgO + H_2$)	(1)
	B is incorrect because magnesium oxide is formed, not magnesium hydroxide C is incorrect because magnesium oxide is formed, but is MgO not Mg2O	Choose an item.
	$m{D}$ is incorrect because magnesium oxide is formed, not magnesium hydroxide, which is $Mg(OH)_2$	

Question Number	Answer			Mark	
6	The only correct answer is D (lithium oxide, nitrogen dioxide and oxygen	calcium oxide, nitrogen dioxide and oxygen)	(1)
	A is incorrect because both nitrat	es form an oxide, nitrogen dioxide an	d oxygen		
	B is incorrect because lithium oxi	ide, nitrogen dioxide and oxygen are f	formed		
	C is incorrect because calcium ox	cide, nitrogen dioxide and oxygen are	formed		

Question Number	Answer	Mark
7	The only correct answer is A (gaps between electronic energy levels)	(1)
	B is incorrect because the ionic radius plays no part in the colour of the flame test	
	C is incorrect because the electrons move between energy levels and are not lost	
	$m{D}$ is incorrect because it is not the number of electrons but the energy gap between levels which is important	

Question Number	Answer	Mark
8	The only correct answer is D (strontium chloride)	(1)
	A is incorrect because the precipitate would be yellow, not white	
	B is incorrect because the precipitate would be cream coloured, not white	
	C is incorrect because the flame test would be lilac not red	

Question Number	Answer	Mark
9	The only correct answer is D (C ₆ H ₁₄ O)	(1)
	A is incorrect because this compound requires 8 moles of oxygen	
	B is incorrect because this requires 8.5 moles of oxygen	
	C is incorrect because this requires 9.5 moles of oxygen	

Question Number	Answer	Mark
10	The only correct answer is C (sodium nitrate solution)	(1)
	$m{A}$ is incorrect because a white precipitate of barium sulfate would form	
	B is incorrect because a white precipitate of silver chloride would form	
	D is incorrect because a white precipitate of barium sulfate would form	

Question Number	Answer	Mark
11(a)	The only correct answer is B (red to orange)	(1)
	$m{A}$ is incorrect because the end-point is orange and the sulfuric acid solution with methyl orange would be red	
	$m{C}$ is incorrect because the end-point is orange and the sulfuric acid solution with methyl orange would be red	
	$m{D}$ is incorrect because the end-point is orange and the sulfuric acid solution with methyl orange would be red	

Question Number	Answer		
11(b)	The only correct answer is C (0.29)		
	A is incorrect because this is the number of moles of potassium sulfate formed		
	B is incorrect because this is the number of moles of potassium ions in the potassium sulfate formed		
	D is incorrect because this is the concentration of the potassium ions in the final solution		

Question Number	Answer	
11(c)	The only correct answer is C (the total percentage uncertainty is 0.8%	(1)
	$m{A}$ is incorrect because the percentage uncertainty is the same for sulfuric acid and potassium hydroxide (0.4%)	
	B is incorrect because the percentage uncertainty for the pipette reading of sulfuric acid has assumed two readings	
	D is incorrect because the percentage uncertainty for the burette reading of potassium hydroxide has assumed one reading	

Question Number	Answer	Mark
12	The only correct answer is D (number of electrons in the molecule increase)	
	A is incorrect because halogen molecules are not polar	
	$m{B}$ is incorrect because the general trend is for a decrease in bond strength and does not affect boiling temperature	
	$m{C}$ is incorrect because electronegativity decreases down the group and is not relevant to bond strength in halogens	

Question Number	Answer	
13	The only correct answer is C (the first ionisation energy of ³⁷ Cl is greater than that of ⁷⁹ Br)	
	A is incorrect because the atomic radius of isotopes is the same	
	B is incorrect because the electronegativity of isotopes is the same	
	D is incorrect because the mass spectrum of this molecule would have three molecular ions peaks	

Question Number	Answer	
14	The only correct answer is B (yellow purple)	(1)
	A is incorrect because although the lower layer would be brown if concentrated enough the upper layer is purple	
	C is incorrect because the upper layer should be purple	
	D is incorrect because the colours would be correct in a concentrated enough solution if swapped	

Question Number	Answer	Mark
15(a)	The only correct answer is C (E_{mode} and E_{mean} only)	(1)
	\boldsymbol{A} is incorrect because E_{a} would not be changed by temperature	
	${\it \textbf{B}}$ is incorrect because $E_{ m mean}$ would also increase	
	$m{D}$ is incorrect because E_{a} would not be changed by temperature	

Question Number	Answer	
15(b)	he only correct answer is D (E_a , E_{mode} and E_{mean})	
	A is incorrect because all three would decrease as there are fewer particles in the volume	
	B is incorrect because all three would decrease as there are fewer particles in the volume	
	C is incorrect because all three would decrease as there are fewer particles in the volume	

Question Number	Answer	
15(c)	The only correct answer is A (Ea only)	
	${\it B}$ is incorrect because the number of particles at $E_{ m mode}$ and the value of $E_{ m mode}$ would stay the same	
	C is incorrect because the number of particles at E_{mode} and E_{mean} and the value of both would stay the same	
	\boldsymbol{D} is incorrect because E_{mode} and E_{mean} stay the same, but E_{a} will decrease	

Section B

Question Number	Answer	Additional Guidance	Mark
16(a)(i)	An answer that makes reference to the following point:		(1)
	ethanolic (solution) / ethanol as the solvent / ethanolic KOH / ethanolic potassium hydroxide	Allow alcohol / alcoholic in place of ethanol / ethanolic Allow in ethanol Allow NaOH / sodium hydroxide in place of KOH / potassium hydroxide Allow aqueous ethanol Ignore concentration of potassium hydroxide Ignore heat / temperatures / pressure Ignore heat under reflux Do not award just 'ethanol' or 'alcohol'	

Question Number	Answer	Additional Guidance	Mark
16(a)(ii)	An answer that makes reference to the following point:		(1)
	elimination (of hydrogen chloride)	Do not award nucleophilic elimination	

Question Number	Answer	Additional Guidance	Mark
16(b)(i)	An answer that makes reference to the following point:		(1)
	aqueous (solution) / solution in water / aqueous KOH / aqueous potassium hydroxide	Accept aqueous condition / condition is aqueous Allow aqueous ethanol Ignore concentration of potassium hydroxide Ignore temperature Ignore heat under reflux Do not award just 'water'	

Question Number	Answer	Additional Guidance	Mark
16(b)(ii)	An answer that makes reference to the following points:	:0H-	(2)
	• lone pair on O of OH ⁻	H H H \bigwedge	
	• dipole on C–Cl bond	H—c—c—c—c—cι 	
	• curly arrow from lone pair on O to C of C-Cl bond	нннн	
	• curly arrow from C–Cl bond to Cl (or just beyond)		
	All four points scores 2, 2 or 3 points scores 1.		
		H H H H 	
		Point 3 can be awarded from an arrow coming from the O if P1 has not been scored Ignore dipoles on the product Ignore presence or absence of lone pair on Cl ⁻ Ignore transition states	

Question Number	Answer		Additional Guidance	Mark
16(b)(iii)	An answer that makes reference to the following points:		Allow reverse arguments	(2)
	tertiary halogenoalkanes (like 2-iodo-2-methyl propane) react more quickly than primary halogenoalkanes (like 1-chlorobutane)	(1)	Allow a tertiary structure reacts faster than a primary structure Allow a tertiary carbocation is more stable than a primary carbocation Allow the carbon to halogen bond breaks more readily in a tertiary halogenoalkane than a primary Ignore just 2-iodo-2-methyl propane is a tertiary halogenoalkane but 1-chlorobutane is primary Ignore more branched Do not award tertiary halogenoalkanes react faster as they are more stable than primary	
	• C-I bond is weaker than C-Cl bond	(1)	Award the C-I bond enthalpy is less (endothermic) / lower than the C-Cl (bond enthalpy) Allow reactivity increases down the group Allow iodoalkanes react more quickly than (equivalent) chloroalkanes	

(Total for Question 16 = 7 marks)

Question Number	Answer		Additional Guidance	Mark
17(a)	An answer that makes reference to the following points: Stand alone mark • two straight lines of best fit, one passing through the first five points, the other passing through the last four points	(1)(1)(1)	Example of graph: 29.0 28.0 27.0 26.0 25.0 24.0 21.0 20.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 If the values given for MP2 and MP3 are not within tolerance then the straight lines do not score if the points are accurately read.	(3)
	Dependent on some straight lines • end-point volume = 21 (cm ³) ± 0.5 Dependent on some straight lines • maximum temperature = 27.6 (°C) ± 0.1		Allow 30 + the volume read from the graph for end-point volume Do not award the maximum temperature rise instead of maximum temperature but award its use in (c) Allow TE for MP2 and MP3 providing that two straight lines have been drawn	

Question Number	Answer	Additional Guidance	Mark
17(b)		Example of calculation	(1)
	calculation of moles of ammonia	$(1.30 \times 21) \div 1000 = 0.0273 \text{ (mol)}$	
		Allow TE on end-point volume in (a) or end point volume – 30 if 30 has been added to the volume for the end point from the graph	

Question Number	Answer		Additional Guidance	Mark
17(c)	 calculate mass of water being heated at end-point 	(1)	Example of calculation 30 + end point volume 30 + 21 = 51 (g)	(5)
	• calculate temperature rise	(1)	$27.6 - 20.7 = 6.9 (^{\circ}\text{C})$	
	• calculation of energy transfer	(1)	Energy transfer = $51 \times 4.18 \times 6.9 = 1470.9$ (J)	
	• calculation of enthalpy change per mole	(1)	$1470.9 \div 0.0273 = 53881 (\text{J / J mol}^{-1})$	
	 calculation of final answer to 2 or 3 SF including negative sign 	(1)	- 53.9 / -54 (kJ mol ⁻¹) Allow TE throughout and on (a) and (b)	

(Total for Question 17 = 9 marks)

Question Number	Answer		Additional Guidance	Mark
18(a)(i)	 two dots and two crosses in one overlap and two crosses in the other overlap all non-bonding electrons correct dependent on M1 	(1) (1)	Allow unpaired electrons All dots or all crosses scores 1 mark Allow dots and crosses swapped (dots for crosses, crosses for dots) If no other mark is scored allow (1) for either of the structures below	(2)

Question Number	Answer	Additional Guidance	Mark
18(a)(ii)	An answer that makes reference to the following point:		(1)
	chlorine has non-bonding electrons in its outer shell which repel the bonding pairs (of electrons)	Allow any answer referring to lone or non-bonding electrons, including just a single electron and referring to repulsion or repulsive forces with bonding pairs and/or lone pairs e.g. there are lone pairs of electrons and lone pair repulsion is greater than bond pair repulsion	
		Ignore the lone pairs on oxygen repel Ignore just chlorine dioxide minimises repulsion between electrons	
		Do not award the lone pair of electrons repel the oxygen atoms	

Question Number	Answer	Additional Guidance	Mark
18(b)(iii)	An answer that makes reference to the following point:		(1)
	 the Roman numeral is the charge the chlorine would have if the species were fully ionic / is the oxidation number of the chlorine (in the ions) OR the oxidation number of chlorine in chlorate(V) is (+)5 and in chlorate(VII) is (+)7 	Allow is the oxidation number of chlorine in the compound Ignore just is the charge on the chlorine Do not award is the oxidation number of chlorine in the molecule	
		Allow valency of chlorine in chlorate(V) is (+)5 and in chlorate(VII) is (+)7	
		Allow chlorine is +5 in chlorate(V) and +7 in chlorate(VII)	
		Do not award the charge on chlorate(V) is +5 and on chlorate(VII) is +7	

Question Number	Answer	Additional Guidance	Mark
18(b)(iv)	An answer that makes reference to the following point:		(1)
	• +4 / 4	Allow (+IV) Do not award -4	

Question Number	Answer		Additional Guidance	Mark
18(b)(v)	An answer that makes reference to the following points:			(2)
	• either (+)5 or (+)6	(1)		
	• because it must be between (+)4 and (+)7	(1)	Allow must reduce to (+)4 and oxidise to (+)7 Chlorine goes from +5 to +4 and +7 scores M2 Allow TE on answers in (b)(i) and (b)(ii) throughout	

Question Number	Answer			Additional Guidance		Mark
18(b)(iv)			Example of calculation There must be some re		or M2, M3 and M4	(4)
	 calculation of percentage by mass of oxygen 	(1)	% mass of oxygen = 1	00 - 1.18 - 42.01 = 56	.81	
	 calculation of moles of atoms present 	, ,	Н	Cl	O	
	calculation of ratio	(1)	1.18 ÷ 1	42.01 ÷ 35.5	56.81 ÷ 16	
	culculation of fullo	(1)	$1.18 \div 1.18 = 1$	$1.1834 \div 1.18 = 1$	$3.5506 \div 1.18 = 3$	
	• calculation of mass of empirical formula (and therefore molecular formula)		mass of HClO ₃ = 1 + Therefore molecular fo		5 (÷ 84.5 = 1)	
	OR A calculation that shows 84.5 ÷ 84.5	(1)	Allow atoms in any or Allow TE on M1	der		

Question Number	Answer	Additional Guidance	Mark
18(b)(v)	• equation for Step 1 (1)	$2KClO_3 + H_2SO_4 \rightarrow 2HClO_3 + K_2SO_4$	(2)
	• equation for Step 1	OR	
		$KClO_3 + H_2SO_4 \rightarrow HClO_3 + KHSO_4$	
	• equation for Step 2	$3HClO_3 \rightarrow 2ClO_2 + HClO_4 + H_2O$	
	(1)	Allow two unbalanced equations with all species correct for (1)	
		Allow TE on answer to (b)(v) in place of HClO ₃ in both equations.	
		Ignore state symbols even if incorrect	

(Total for Question 18 = 13 marks)

Question Number	Answer	Additional Guidance	Mark
19(a)	An answer that makes reference to the following point:		(1)
	• phosphoric((V)) acid / H ₃ PO ₄ / sulfuric((VI)) acid / H ₂ SO ₄	If name and formula are given both must be correct Ignore concentration	

Question Number	Answer		Additional Guidance	Mark
19(b)	An answer that makes reference to the following points: • the reaction is cooled so that ethanol (and excess water)	(1)	Mark independently Allow the ethanol is removed from the reaction	(2)
	condenses / liquefies	(-)	mixture Ignore just the ethanol condenses / liquifies Ignore comments about temperature change and position of equilibrium, even if incorrect	
	the unused ethene / starting materials (which is still gaseous) are recycled	(1)	Allow unused reactants are added back to the mixture Allow unused reactants are reused	

Question Number	Answer	Additional Guidance	Mark	
19(c)(i)	An answer that makes reference to the following points:		Allow reverse arguments	(2)
	 the forward reaction is exothermic so is favoured by a lower temperature (giving a higher yield) 	(1)	Allow it is an exothermic reaction favoured by a lower temperature Allow the backward reaction is endothermic so at higher temperatures the yield is lower	
	• but the lower temperature results in a rate of reaction that is too slow (to be economically viable)	(1)	Allow a low temperature decreases the rate of the reaction Allow a higher temperature increases the rate of reaction (making the ethanol faster) Ignore the cost of higher temperatures	
			If no other mark is awarded allow (1) for the temperature used is a compromise between rate and yield	

Question Number	Answer		Additional Guidance	Mark
19(c)(ii)	An answer that makes reference to the following points:		Mark independently	(2)
	• the equilibrium shifts giving a greater yield of ethanol	(1)	Ignore direction of shift, even if incorrect	
	• (because) there are fewer moles (of gas) on the products side / right hand side (than there are on the reactants side / left hand side	(1)	Ignore the right hand side is exothermic Do not award incorrect numbers of moles of gaseous reactants and/or products	
			Ignore relative cost of higher pressure and / or higher pressure compared to higher temperature Ignore effect on rate unless linked correctly to higher yield at equilibrium	

Question Number	Answer	Additional Guidance	Mark
Number 19(c)(iii)	An answer that makes reference to the following point: • name of poly(ethene) or structural formula of poly(ethene)	Accept polyethene / polythene H	(1)
	structural formula of poly(ethene)		

Answer	Additional Guidance	Mark
An answer that makes reference to the following points:		(1)
 higher pressures require special plant / equipment to withstand the higher pressures (which are expensive) 	Allow high pressure results in engineering problems Allow cost linked to either producing high pressure or to special equipment / plant Allow high energy costs Ignore unjustified comments about cost Ignore comments about safety unless linked to cost of special plant Ignore more equipment	
	An answer that makes reference to the following points: • higher pressures require special plant / equipment to	An answer that makes reference to the following points: • higher pressures require special plant / equipment to withstand the higher pressures (which are expensive) Allow high pressure results in engineering problems Allow cost linked to either producing high pressure or to special equipment / plant Allow high energy costs Ignore unjustified comments about cost Ignore comments about safety unless linked to cost of special plant

Question Number	Answer		Additional Guidance	Mark
19(c)(v)	An answer that makes reference to the following points:		(2)	
	• (an advantage is that) it pushes equilibrium to the right increasing the yield (of ethanol)	(1)	Allow the rate of the forward reaction will increase (lowering the concentration of water) and increase the yield of ethanol Ignore just the rate of the (forward) reaction increases Ignore just the yield of ethanol increases	
	• (a disadvantage is) that there is more water condensed with the ethanol (to separate)		Allow the final mixture is more impure Allow the ethanol produced / final mixture will be diluted	
	OR the catalyst is washed from the support / is diluted by the water / dissolves in the condensed water and is removed from the reaction vessel	(1)	Ignore cost of heating more water Ignore the reaction mixture will be diluted Ignore comments about rate of reaction Ignore corrosion	

(Total for Question 19 = 11 marks)

TOTAL FOR SECTION B = 40 MARKS

Section C

Question Number	Answer	Additional Guidance	Mark
20(a)(i)	An answer that makes reference to the following point:		(1)
	• (2-)methylbuta-1,3-diene	Allow (2-)methylbut-1,3-diene Allow (2-)methylbutan-1,3-diene Allow (2-)methyl-1,3-butadiene Do not award (2-)methylbuta-1,3-ene / (2-)methyldibut-1,3-ene	
		Ignore missing or incorrect hyphens or commas	

Question Number	Answer	Additional Guidance	Mark
20(a)(ii)	An answer that makes reference to the following points:	Penalise molecular formulae once only Penalise lack of positive charges or presence of negative charges once only Allow displayed or skeletal formulae, with or without brackets around the outside Ignore absence of double bonds	(2)
	• $m/z = 68$ is $(CH_2=C(CH_3)-CH=CH_2)^+$ (1)	Award (CH ₃ -C(=CH ₂)-CH=CH ₂) ⁺ Award (CH ₂ =CH-C(CH ₃)=CH ₂) ⁺ Award (CH ₂ =CH-C(=CH ₂)-CH ₃) ⁺	
	• $m/z = 53$ is $(CH_2=C-CH=CH_2)^+$ (1)	Award (CH ₂ =CH–C=CH ₂) ⁺	

Question Number	Answer	Additional Guidance	Mark
20(a)(iii)	An answer that makes reference to the following points:	Accept a diagram with labels showing one or more of each of the bonds e.g. PCRRRCHH	(3)
	• P is due to C-H (stretching vibrations) in an alkene (1	Do not award C-H (stretching) in an arene	
	• Q is due to C-H (stretching vibrations) in an alkane (1	Do not award C-H (stretching) in an arene	
		If M1 and M2 are not scored allow P and Q are due to C-H (stretching vibrations) for (1) but do not award this if either C-H is attributed to an arene	
	• R is due to C=C (stretching vibrations in an alkene) (1	Do not award C=C (stretching) in an arene	

Question Number	Answer		Additional Guidance	Mark
20(b)(i)	 An answer that makes reference to the following points: molecular formula of either myrcene, limonene or both is C₁₀H₁₆ and the molecular / empirical formula of isoprene is C₅H₈ so the molecular formula of myrcene and limonene is 	(1)		(2)
	 twice isoprene (so they are terpenes) OR molecular formula of either myrcene, limonene or both is C₁₀H₁₆ and the molecular / empirical formula of isoprene is C₅H₈ 	(1)(1)	Allow TE on incorrect molecular formulae	
	• so the empirical formula of myrcene and limonene is the same as isoprene (so they are terpenes)	(1)	Allow TE on incorrect molecular formulae	

Question Number	Answer	Additional Guidance	Mark
20(b)(ii)	An answer that makes reference to the following point:		(1)
	• heat and nickel / Ni (catalyst)	Allow nickle Allow any quoted temperature or range of temperatures above room temperature Allow Pt, Pd, Ir, Rh, Ru	

Question Number	Answer			Additional Guidance					
Number 20(b)(iii)	Stand alone first mark • calculation of M_r of terpene and moles of terpene Method 1 • either value for number of moles of H_2	(1) (1)	Example of calculation 5 ÷ 136 = 0.036765 numbers of moles of hydrogen required volume of hydrogen required		Limonene 0.036765×2 $= 0.07353$ 0.07353×24000 $= 1764.7 \text{ cm}^3 / 1.7647 \text{ dm}^3$	Mark (4)			
	 second volume of H₂ with unit Method 2 either value for one H₂ per terpene 	(1)(1)	one hydrogen per terpene	Myrcene 0.036765 × 24000 = 882.36	Limonene 0.036765 × 24000 = 882.36				
	 either volume of H₂ second volume of H₂ with unit 	(1)(1)	necessarily be seen Ignore rounding errors	882.36×3 = 2647.1 cm ³ / 2.6471 dm ³ bund by use of ratios of 2:3 or in all steps except the final an ibuted to the correct terpene w	swer				

Question Number	Answer	Additional Guidance	Mark
20(b)(iv)	An answer that makes reference to the following point:		(1)
	• 2,6-dimethyloctane	Ignore any structures drawn as working	

Question Number	A	answer	Additional Guidance	Mark
*20(c)		oning.	Guidance on how the mark scheme should be applied. The mark for indicative content should be added to the mark for lines of reasoning. For example, a response with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there were no linkages between the points, then the same indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages). In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks 3 or 4 indicative points would get 1 reasoning mark 0, 1 or 2 indicative points would get zero reasoning marks If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded do not deduct mark(s). Comment: Look for the indicative marking points first, then consider the mark for the structure of the answer and sustained line of reasoning	(6)
	Answer shows a coherent logical structure with linkages and fully sustained lines of reasoning demonstrated throughout Answer is partially structured wi some linkages and lines of reasoning Answer has no linkages between points and is unstructured	Number of marks awarded for structure of answer and sustained lines of reasoning 2 th 1		

Indicative content IP1, 3 and 5 are for the general results of the test IP2, 4 and 6 are for results for each and explanation (potassium dichromate(VI) is not a good choice because) linked to structure around -OH group Ignore additional tests throughout IP1 potassium dichromate(VI) would go from orange to green (with menthol and citronellol but would stay the same / would not go green Allow blue instead of green Observation is not needed for linalool to score in with linalool) IP1 but do not award for an incorrect linalool observation **IP2** menthol and citronellol are oxidised / react but linalool is a tertiary alcohol which is not oxidised by / does not react with Allow primary or secondary alcohols instead of potassium dichromate (so does not identify this –OH group) citronellol and menthol (potassium manganate(VII) is not a good choice because) IP3 potassium manganate(VII) would go from purple to colourless (with all three alcohols) Do not award pink to colourless **IP4** (but would not identify the presence of the –OH group) as it also reacts with the C=C / reacts to produce a diol with linalool and citronellol / two of the alcohols Phosphorus(V) chloride is the best choice because) Allow steamy fumes **IP5** phosphorus(V) chloride will produce **misty fumes** (with all) Allow white fumes **IP6** (and identifies the presence of the –OH group in each as it) reacts with primary secondary and tertiary alcohols / reacts with all three alcohols

(Total for Question 20 = 20 marks)

TOTAL FOR SECTION C = 20 MARKS TOTAL FOR PAPER = 80 MARKS